- 課程介紹
- Neural Networks and Deep Learning(
- NN其他的基礎,妳可以辨識出一隻貓
- Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
- 調整參數、正則化
- Momentum Amest Prop
- Structuring your Machine Learning project
- Cross-validation sets and test sets
- end to end
- Convolutional Neural Networks(CNN)
- Natural Language Processing: Building sequence models
- Recurrent Neural Network(RNN)
- LSTM(Long short term memory models)
- Deep Learning Apply to SL
- What's a neural network?
- Housing Price Prediction
- Price>0(Simple NN)
- Size(Input) ->Neural(一個這個O) ->Price(output)
- Relu function = max(0,y)
- 給 input x and output y middle will figure out themselves
- 給足各地X,Y 可以訓練出好的model
- Supervised Learning with Neural Networks
- Real Estate(NN)
- Online Advertising (NN)
- Photo tagging(CNN)
- Speech recognition(RNN) sequence date
- Machine Transiation(RNN) sequence data
- Autonomous driving
- Why is Deep Leaning taking off
- M =Training set的大小
- if m太小,優劣很難說
- Sigomal function >Relu function (Gradient decent跑比較快)
- About this course
- Introduction
- Basics of NN progrmming
- One hidden layer NN
- Deep NN
RNN are a model type / The iterative process of developing DL system is a completely separate concept.
沒有留言:
張貼留言